How do you derive exact algebraic formulae for #sin (pi/10)# and #cos (pi/10)# ?
2 Answers
See explanation...
Explanation:
The fifth roots of
graph{((x-1)^2+y^2-0.001)((x-cos((2pi)/5))^2+(y-sin((2pi)/5))^2-0.001)((x-cos((4pi)/5))^2+(y-sin((4pi)/5))^2-0.001)((x-cos((6pi)/5))^2+(y-sin((6pi)/5))^2-0.001)((x-cos((8pi)/5))^2+(y-sin((8pi)/5))^2-0.001) = 0 [-2.5, 2.5, -1.25, 1.25]}
We can write these roots in trigonometric form as:
#cos ((2npi)/5) + i sin((2npi)/5)" "# for#n = 0,1,2,3,4#
These are the zeros of:
#x^5-1 = (x-1)(x^4+x^3+x^2+x+1)#
#color(white)(x^5-1) = (x-1)x^2(x^2+x+1+1/x+1/x^2)#
#color(white)(x^5-1) = (x-1)x^2((x+1/x)^2+(x+1/x)-1)#
#color(white)(x^5-1) = (x-1)x^2(((x+1/x)+1/2)^2-(sqrt(5)/2)^2)#
#color(white)(x^5-1) = (x-1)x^2(x+1/x+1/2-sqrt(5)/2)(x+1/x+1/2+sqrt(5)/2)#
#color(white)(x^5-1) = (x-1)(x^2+(1/2-sqrt(5)/2)x + 1)(x^2+(1/2+sqrt(5)/2)x+1)#
Hence we find:
#sin(pi/10) + i cos(pi/10) = cos((2pi)/5) + i sin((2pi)/5)#
is a root of:
#x^2+(1/2-sqrt(5)/2)x + 1 = 0#
Using the quadratic formula, we find roots:
#x = 1/4(sqrt(5)-1) +- i 1/4sqrt(10 + 2sqrt(5))#
Equating real and imaginary parts and choosing the appropriate sign, we find:
#sin(pi/10) = 1/4(sqrt(5)-1)#
#cos(pi/10) = 1/4sqrt(10+2sqrt(5))#
Explanation:
Let
and
i.e.
or
or
or
but as
and
=