How to find formula for nth derivative of #f(x)=e^(2x)(x^2-3x+2)#?
3 Answers
Explanation:
Pose:
The first derivative can be evaluated with the product rule:
For
Note now that, as
So, for
On the other hand:
so:
and as
There are only three terms in the sum and we can write them explicitly:
Then:
simplifying:
and in conclusion:
By direct inspection we can see the formula gives the right derivative also for
# f^((n))(x) = {4x^2+4nx +n^2-7n -12x + 8} \ 2^(n-2) \ e^(2x) #
Explanation:
We have:
# f(x) = e^(2x)(x^2-3x+2) #
Although we could leave the function "as is" and use the product rule to differentiate, it makes more sense, to multiply out and analyze each component separately:
# f(x) = x^2e^(2x)-3xe^(2x)+2e^(2x) #
# " " = f_1(x) -3f_2(x) + 2f_3(x) #
say, where:
# f_1(x) = x^2e^(2x) #
# f_2(x) = xe^(2x) #
# f_3(x) = e^(2x) #
Then trivially, the
# f^((n))(x) = f_1^((n))(x) -3f_2^((n))(x) + 2f_3^((n))(x) # ..... [A]
Differentiating wrt
# f_3^((1))(x) = 2e^(2x) \ \ \ \ \ \ \ \ \ \ = 2^1e^(2x)#
# f_3^((2))(x) = 2*2e^(2x) \ \ \ \ \ = 2^2e^(2x)#
# f_3^((3))(x) = 2*2*2e^(2x) = 2^3e^(2x)#
Leading us to conclude that:
# f_3^((n))(x) = 2^n \ e^(2x)# ..... [B]
We have:
# f_2(x) = xf_3(x) #
Differentiating wrt
# f_2^((1))(x) = (x)(f_3^((1))(x)) + (1)(f_3(x)) #
# " " = x \ f_3^((1))(x) + f_3(x) #
# f_2^((2))(x) = (x)(f_3^((2))(x)) + (1)(f_3^((1))(x)) + f_3^((1))(x)#
# " " = x \ f_3^((2))(x) + 2 \ f_3^((1))(x)#
# f_2^((3))(x) = (x)(f_3^((3))(x)) + (1)(f_3^((2))(x)) + 2 \ f_3^((2))(x)#
# " " = xf_3^((3))(x) + 3 \ f_3^((2))(x)#
Leading us to conclude that:
# f_2^((n))(x) = xf_3^((n))(x) + n \ f_3^((n-1))(x)# ..... [C}
And using [B] this becomes:
# f_2^((n))(x) = x \ 2^n \ e^(2x) + n \ 2^(n-1) \ e^(2x)#
# " " = x \ 2 \ 2^(n-1) \ e^(2x) + n \ 2^(n-1) \ e^(2x)#
# " " = (2x+n) \ 2^(n-1) \ e^(2x) # ..... [D]
We have:
# f_1(x) = xf_2(x) #
Using the above result [C] we conclude that:
# f_1^((n))(x) = xf_2^((n))(x) + n \ f_2^((n-1))(x)#
Using the result [D] this becomes:
# f_1^((n))(x) = x (2x+n) \ 2^(n-1) \ e^(2x) + n(2x+n-1) \ 2^(n-1-1) \ e^(2x) #
# " " = x (2x+n) \ 2^(n-1) \ e^(2x) + n(2x+n-1) \ 2^(n-2) \ e^(2x) #
# " " = 2x (2x+n) \ 2^(n-2) \ e^(2x) + n(2x+n-1) \ 2^(n-2) \ e^(2x) #
# " " = (2x (2x+n) + n(2x+n-1) ) \ 2^(n-2) \ e^(2x) #
# " " = (4x^2+2nx + 2nx+n^2-n ) \ 2^(n-2) \ e^(2x) #
# " " = (4x^2+4nx +n^2-n ) \ 2^(n-2) \ e^(2x) #
Combining the results:
Recall from [A] we have:
# f^((n))(x) = f_1^((n))(x) -3f_2^((n))(x) + 2f_3^((n))(x) #
Combining the above results we get:
# f^((n))(x) = (4x^2+4nx +n^2-n ) \ 2^(n-2) \ e^(2x) -3 (2x+n) \ 2^(n-1) \ e^(2x) + 2(2^n \ e^(2x)) #
# " " = (4x^2+4nx +n^2-n ) 2^(n-2) \ e^(2x) -3 (2x+n) \ 2 \ 2^(n-2) \ e^(2x) + 2 ( 2 \ 2 \ 2^(n-2) \ e^(2x)) #
# " " = {(4x^2+4nx +n^2-n ) -6 (2x+n) + 8} \ 2^(n-2) \ e^(2x)) } #
# " " = {4x^2+4nx +n^2-n -12x-6n + 8} \ 2^(n-2) \ e^(2x) #
# " " = {4x^2+4nx +n^2-7n -12x + 8} \ 2^(n-2) \ e^(2x) #
Explanation:
We will solve this Problem, using the following Leibnitz Theorem
(LT) for
Denoting the
We take,
Enjoy Maths.!