How do you solve #\frac { 2- 2x } { 3x + 5} \leq 0#?

2 Answers
Jul 5, 2017

Solution is #x <= -5/3# or #x >=1#

Explanation:

For considering #(2-2x)/(3x+5) <=0#, let us first consider #(2-2x)/(3x+5) <0#

If it is so either #2-2x <0# and #3x+5 > 0# i.e. #x>1# or #x> -5/3# i.e. #x > 1#

or #2-2x >0# and #3x+5 < 0# i.e. #x<1# or #x< -5/3# i.e. #x< -5/3#

Now adding, solution is #x <= -5/3# or #x >=1#

Jul 5, 2017

The solution is #x in (-oo,-5/3) uu[1, +oo)#

Explanation:

Let #f(x)=(2(1-x))/(3x+5)#

We build a sign chart

#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaaaa)##-5/3##color(white)(aaaaaa)##1##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##3+5x##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaa)##+#

#color(white)(aaaa)##1-x##color(white)(aaaaaaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaa)##-#

Therefore,

#f(x)<=0# when #x in (-oo,-5/3) uu[1, +oo)#

graph{(2-2x)/(3x+5) [-14.24, 14.25, -7.12, 7.12]}