How do you integrate #int (x^3 - 2) / (x^4 - 1)# using partial fractions?

1 Answer
Jul 12, 2017

#1/4ln|((x^2+1)(x+1)^3)/(x-1)|+tan^-1(x) + C#

Explanation:

First, let's factor #x^4-1#.

#x^4-1 = (x^2-1)(x^2+1) = (x-1)(x+1)(x^2+1)#

Using partial fraction separation, we can say that:

#(x^3-2)/((x-1)(x+1)(x^2+1)) = A/(x-1) + B/(x+1)+(Cx+D)/(x^2+1)#

#x^3-2 = A(x+1)(x^2+1)+B(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Both the #A# and #Cx+D# terms have a #(x+1)# factor, so we can let #x# equal #-1# and solve for #B#.

#(-1)^3-2 = A(0)(2)+B(-2)(2)+(-C+D)(0)(-2)#

#-3 = -4B#

#3/4 = B#

Now we can substitute this into the original equation.

#x^3-2 = A(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substitute #x=1# to get rid of #(Cx+D)#.

#1-2 = A(2)(2) + 3/4(0)(2) + (C+D)(2)(0)#

#-1 = 4A#

#-1/4 = A#

Now substitute this into the original equation.

#x^3-2 = -1/4(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Plug in #x=0# to get rid of #C#.

#-2 = -1/4(1)(1)+3/4(-1)(1)+(0C+D)(1)(-1)#

#-2 = -1/4 - 3/4 - D#

#-1 = -D#

#1 = D#

Now substitute this into the original equation:

#x^3-2 = -1/4(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+1)(x+1)(x-1)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now we can pretty much plug in any number to solve for #C#. Let's do #x=2# since that won't make any terms zero.

#2^3-2 = -1/4(3)(5)+3/4(1)(5)+(2C+1)(3)(1)#

#6 = -15/4+15/4 + (6C+3)#

#6 = 6C+3#

#3=6C#

#1/2 = C#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So we have:

#(x^3-2)/((x-1)(x+1)(x^2+1)) = (-1/4)/(x-1) + (3/4)/(x+1)+(1/2x+1)/(x^2+1)#

All that is left to do is take the integral of this function.

#int[(-1/4)/(x-1) + (3/4)/(x+1)+(1/2x+1)/(x^2+1)]dx#

#= int(-1/4)/(x-1)dx + int(3/4)/(x+1)dx + int(1/2x+1)/(x^2+1)dx#

We can integrate the first two pretty easily, and then we can split the numerator of the last integral into two.

#= -1/4ln|x-1|+3/4ln|x+1|+int(1/2x)/(x^2+1)dx + int1/(x^2+1)dx#

Use the substitution #u = (x^2+1), " "du = 2xdx#:

#= -1/4ln|x-1|+3/4ln|x+1|+int(1/4)/udu + int1/(x^2+1)dx#

#= -1/4ln|x-1|+3/4ln|x+1|+1/4ln(u) + tan^-1(x)#

And finally simplify everything (don't forget #+C# !)

#= -1/4ln|x-1|+1/4ln|(x+1)^3| + 1/4ln|x^2+1| + tan^-1(x)#

#= 1/4ln|((x^2+1)(x+1)^3)/(x-1)|+tan^-1(x) + C#

Final Answer