What is the polar form of #(-200,10)#?

1 Answer
Jul 15, 2017

#(10sqrt401, 3.09)#

Explanation:

To convert this rectangular coordinate #(x,y)# to a polar coordinate #(r, theta)#, use the following formulas:

#r^2=x^2+y^2#
#tan theta=y/x#

#r^2=(-200)^2+(10)^2#
#r^2=40100#
#r=sqrt40100#
#r=10sqrt401#

#tan theta=y/x#

#tan theta=10/-200#
#theta=tan^-1(10/-200)#
#theta~~-0.05#

The angle #-0.05# radians is in Quadrant #IV#, while the coordinate #(-200, 10)# is in Quadrant #II#. The angle is wrong because we used the #arctan# function, which only has a range of #[-pi/2, pi/2]#. To find the correct angle, add #pi# to #theta#.

#-0.05 + pi = 3.09#

So, the polar coordinate is #(10sqrt401, 3.09)# or #(200.25, 3.09)#.