What are the roots of the equation #x^2+4x-16=0#?

2 Answers
Jul 15, 2017

#x=-2+-2sqrt(5)#

Explanation:

This quadratic equation is in the form #ax^2+bx+c#, where #a=1#, #b=4#, and #c=-16#. In order to find the roots, we can use the quadratic formula below.

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-4+-sqrt(4^2-4(1)(-16)))/(2(1))#

#x=(-4+-sqrt(80))/(2)#

#x=(-4+-4sqrt(5))/(2)#

#x=-2+-2sqrt(5)#

Jul 15, 2017

See a solution process below:

Explanation:

We can use the quadratic formula to find the roots for this equation. The quadratic formula states:

For #ax^2 + bx + c = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-b +- sqrt(b^2 - 4ac))/(2a)#

Substituting #1# for #a#; #4# for #b# and #-16# for #c# gives:

#x = (-4 +- sqrt(4^2 - (4 * 1 * -16)))/(2 * 1)#

#x = (-4 +- sqrt(16 - (-64)))/2#

#x = (-4 +- sqrt(80))/2#

#x = (-4 + sqrt(16 * 5))/2# and #x = (-4 - sqrt(16 * 5))/2#

#x = (-4 + (sqrt(16)sqrt(5)))/2# and #x = (-4 - (sqrt(16)sqrt(5)))/2#

#x = (-4 + 4sqrt(5))/2# and #x = (-4 - 4sqrt(5))/2#

#x = -2 + 2sqrt(5)# and #x = -2 - 2sqrt(5)#