We can use the quadratic formula to find the roots for this equation. The quadratic formula states:
For #ax^2 + bx + c = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-b +- sqrt(b^2 - 4ac))/(2a)#
Substituting #1# for #a#; #4# for #b# and #-16# for #c# gives:
#x = (-4 +- sqrt(4^2 - (4 * 1 * -16)))/(2 * 1)#
#x = (-4 +- sqrt(16 - (-64)))/2#
#x = (-4 +- sqrt(80))/2#
#x = (-4 + sqrt(16 * 5))/2# and #x = (-4 - sqrt(16 * 5))/2#
#x = (-4 + (sqrt(16)sqrt(5)))/2# and #x = (-4 - (sqrt(16)sqrt(5)))/2#
#x = (-4 + 4sqrt(5))/2# and #x = (-4 - 4sqrt(5))/2#
#x = -2 + 2sqrt(5)# and #x = -2 - 2sqrt(5)#