How do you divide (2x^3+3x^2-8x+3)div(x+3)?
2 Answers
Jul 20, 2017
Explanation:
So
Jul 20, 2017
Explanation:
"one way is to use the divisor as a factor in the numerator"
"consider the numerator"
color(red)(2x^2)(x+3)color(magenta)(-6x^2)+3x^2-8x+3
=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(magenta)(+9x)-8x+3
=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)color(magenta)(-3)+3
=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)+0
rArr(2x^3+3x^2-8x+3)/(x+3)
=(cancel((x+3))(2x^2-3x+1))/(cancel((x+3))
=2x^2-3x+1