How do you divide (2x^3+3x^2-8x+3)div(x+3)(2x3+3x28x+3)÷(x+3)?

2 Answers
Jul 20, 2017

(2x^3+3x^2-8x+3)/(x+3)=2x^2-3x+12x3+3x28x+3x+3=2x23x+1

Explanation:

enter image source here

So

(2x^3+3x^2-8x+3)/(x+3)=2x^2-3x+12x3+3x28x+3x+3=2x23x+1

Jul 20, 2017

2x^2-3x+12x23x+1

Explanation:

"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator

"consider the numerator"consider the numerator

color(red)(2x^2)(x+3)color(magenta)(-6x^2)+3x^2-8x+32x2(x+3)6x2+3x28x+3

=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(magenta)(+9x)-8x+3=2x2(x+3)3x(x+3)+9x8x+3

=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)color(magenta)(-3)+3=2x2(x+3)3x(x+3)+1(x+3)3+3

=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)+0=2x2(x+3)3x(x+3)+1(x+3)+0

rArr(2x^3+3x^2-8x+3)/(x+3)2x3+3x28x+3x+3

=(cancel((x+3))(2x^2-3x+1))/(cancel((x+3))

=2x^2-3x+1