How do you simplify #(\frac { 2a ^ { 7} } { 3b ^ { 7} } ) ^ { - 2}#?

2 Answers
Jul 22, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the expression as:

#a = a^color(red)(1)#

#((2^color(red)(1)a^7)/(3^color(red)(1)b^7))^-2#

Next, use this rule of exponents to eliminate the outer exponent:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#((2^color(red)(1)a^color(red)(7))/(3^color(red)(1)b^color(red)(7)))^color(blue)(-2) => (2^(color(red)(1) * color(blue)(-2))a^(color(red)(7) * color(blue)(-2)))/(3^(color(red)(1) * color(blue)(-2))b^(color(red)(7) * color(blue)(-2))) => (2^-2a^-14)/(3^-2b^-14)#

Then, use these rules of exponents to eliminate the negative exponents:

#x^color(red)(a) = 1/x^color(red)(-a)# and #1/x^color(red)(a) = x^color(red)(-a)#

#(2^-2a^-14)/(3^-2b^-14) => (3^(- -2)b^(- -14))/(2^(- -2)a^(- -14)) => (3^2b^14)/(2^2a^14) =>#

#(9b^14)/(4a^14)#

Jul 22, 2017

#color(blue)((9b^14)/(4a^14)#

Explanation:

#((2a^7)/(3b7))^-2#

#:.=1/((2a^7)/(3b7))^2#

#:.=1/((4a^14)/(9b14))#

#:.=1/1 xx ( 9b^14)/(4a^14)#

#:.=color(blue)((9b^14)/(4a^14#