How do you differentiate #y=(lnx)^4#?
1 Answer
Aug 4, 2017
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larr" chain rule"#
#y=(lnx)^4#
#rArrdy/dx=4(lnx)^3xxd/dx(lnx)#
#color(white)(rArrdy/dx)=(4(lnx)^3)/x#