#"NaH"_2"PO"_4# dissociates completely in solution:
#"NaH"_2"PO"_4 → "Na"^"+" + "H"_2"PO"_4^"-"#
The dihydrogen phosphate ion is a weak acid:
#"H"_2"PO"_4^"-" + "H"_2"O" ⇌ "H"_3"O"^"+" + "HPO"_4^"2-"; K_text(a) = 6.23 × 10^"-8"#
We can use an ICE table to calculate the concentrations of the ions in solution.
Let's rewrite the equation as
#color(white)(mmmmmmmm)"HA"^"-" +color(white)(ll) "H"_2"O" ⇌ "H"_3"O"^"+" + "A"^"2-"#
#"I/mol·L"^"-1":color(white)(mmm)0.1color(white)(mmmmmmmll)0color(white)(mmm)0#
#"C/mol·L"^"-1":color(white)(mmm)"-"xcolor(white)(mmmmmmml)"+"xcolor(white)(mm)"+"x#
#"E/mol·L"^"-1":color(white)(mm)"0.1 -"xcolor(white)(mmmmmmm)xcolor(white)(mmm)x#
#K_text(a) = (["H"_3"O"^"+"]["A"^"2-"])/(["HA"]) = (x × x)/("0.1 -"color(white)(l)x) = x^2/("0.1 -"color(white)(l)x) = 6.23 × 10^"-8"#
Check for negligibility:
#0.1/(6.23 × 10^"-8") = 2 × 10^6 ≫ 400#.
∴ #x ≪ 0.1#.
Then
#x^2/0.1 = 6.23 × 10^"-8"#
#x^2 = 0.1 × 6.23 × 10^"-8" = 6.2 × 10^"-9"#
#x = 7.9 × 10^"-5"#
#["H"_3"O"^"+"] = x color(white)(l)"mol/L" = 7.9 × 10^"-5"color(white)(l)"mol/L"#
#"pH" = "-log"["H"_3"O"^"+"] = "-log"(7.9 × 10^"-5") = 4.10#