How do you find all points of inflection given #y=x^4-3x^2#?
2 Answers
Inflection points at
Explanation:
Find the second derivative.
#y' = 4x^3 - 6x#
#y'' = 12x^2 - 6#
Inflection points occur when
#0 = 12x^2 - 6#
#0 = 6(2x^2 - 1)#
#x = +- 1/sqrt(2)#
If we select test points, we see that the sign of the second derivative does indeed change at
Therefore,
Hopefully this helps!
Point of infection
#(0.7, -1.23)#
#(-0.7, -1.23)#
Explanation:
Given -
#y=x^4-3x^2#
#dy/dx=4x^3-6x#
#(d^2y)/(dx^2)=12x^2-6#
#(d^2y)/(dx^2)=0=>12x^2-6=0#
To find the point of inflection, set the second derivative equal to zero
#x^2=6/12=1/2=0.5#
#x=+-sqrt0.5=0.7#
At
At
#y=0.7^4-3(0.7)^2#
#y=0.2401-1.47=-1.23#
#y=-1.23#
Point of infection
#(0.7, -1.23)#
#y=0.2401-1.47=-1.23#
#y=-0.5096#
#y=-1.23#
Point of infection
#(-0.7, -1.23)#