How do you find #(dy)/(dx)# given #x^3+3x^2y+5xy=5#?
1 Answer
Aug 26, 2017
Explanation:
#"differentiate "color(blue)"implicitly with respect to x"#
#"differentiate "3x^2y" and "5xy" using the "color(blue)"product rule"#
#rArr3x^2+(3x^2.dy/dx+6xy)+(5x.dy/dx+5y)=0#
#rArrdy/dx(3x^2+5x)=-3x^2-6xy-5y#
#rArrdy/dx=-(3x^2+6xy+5y)/(3x^2+5x)#