How do you prove that #(1 + secx)/secx = sin^2x/(1 - cosx)#?
1 Answer
Aug 26, 2017
We have:
#(1 + secx)/secx = sin^2x/(1 - cosx)#
This means that
#(1 + 1/cosx)/(1/cosx) = sin^2x/(1 - cosx)#
We can use
#(1 + 1/cosx)/(1/cosx) = (1 - cos^2x)/(1 - cosx)#
Now it's time to simplify. We can use the difference of squares formula to say that
#((cosx + 1)/cosx)/(1/cosx) = ((1 +cosx)(1 - cosx))/(1- cosx)#
#(cosx + 1)/cosx * cosx = 1 + cosx#
#cosx + 1 = cosx +1#
This is clearly true for all values of
Hopefully this helps!