How do you find #\lim _ { x \rightarrow \infty } \frac { x ^ { 2} - 1} { 2x }#?
2 Answers
Sep 2, 2017
We can rewrite as
#L = lim_(x->oo) x^2/(2x) - 1/(2x)#
#L = lim_(x->oo) x - 1/(2x)#
We know that
#L = oo#
Hopefully this helps!
Sep 2, 2017
Explanation:
Divide terms on numerator/denominator by the highest power of x that is
#x^2#
#lim_(xtooo)(x^2/x^2-1/x^2)/((2x)/x^2)#
#=(1-0)/0#
#=+oo#