How do you find the roots, real and imaginary, of y= (3x+4)^2-13x-x^2+14 using the quadratic formula?
1 Answer
Sep 10, 2017
THere are two complex conjugate roots:
x = -11/16 +- sqrt(839)/16i
Explanation:
We have:
y = (3x+4)^2-13x-x^2+14
We seek the roots of
(3x+4)^2-13x-x^2+14 = 0
Expanding we get:
9x^2+24x+16-13x-x^2+14 = 0
:. 8x^2+11x+30 = 0
Using the quadratic formula with:
a=8, b=11, c=30
we have:
x = (-b +- sqrt(b^2-4ac))/(2a)
\ \ = (-11 +- sqrt(11^2-4.8.30))/(2.8)
\ \ = (-11 +- sqrt(121-960))/(16)
\ \ = (-11 +- sqrt(-839))/(16)
\ \ = -11/16 +- sqrt(839)/16i 