What is the Cartesian form of #(36,(-pi)/16))#?
1 Answer
#= (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))#
Explanation:
To convert from polar to rectangular coordinates use:
#{ (x = rcos theta), (y = rsin theta) :}#
First let's find algebraic expressions for
Use:
#sin(pi/4) = cos(pi/4) = sqrt(2)/2#
#sin^2 theta + cos^2 theta = 1#
#cos(2theta) = cos^2 theta - sin^2 theta = 2cos^2 theta - 1 = 1 - 2sin^2 theta#
#sin(-theta) = -sin(theta)#
#cos(-theta) = cos(theta)#
From
#cos theta = +-sqrt((cos 2theta + 1)/2) = +-1/2sqrt(2+2cos2theta)#
From
#sin theta = +-sqrt((1-cos 2theta)/2) = +-1/2sqrt(2-2cos2theta)#
Since
#sin (pi/16) = 1/2sqrt(2-2cos(pi/8))#
#color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+2cos(pi/4)))#
#color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+sqrt(2)))#
#cos (pi/16) = 1/2sqrt(2+2cos(pi/8))#
#color(white)(cos(pi/16)) = 1/2sqrt(2+sqrt(2+sqrt(2)))#
So:
#sin(-pi/16) = -sin(pi/16) = -1/2sqrt(2-sqrt(2+sqrt(2)))#
#cos(-pi/16) = cos(pi/16) = 1/2sqrt(2+sqrt(2+sqrt(2)))#
So with
#(x, y) = (rcostheta, rsintheta)#
#color(white)((x, y)) = (36(1/2sqrt(2+sqrt(2+sqrt(2)))), 36(-1/2sqrt(2-sqrt(2+sqrt(2)))))#
#color(white)((x, y)) = (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))#