How do you simplify #\frac { \cos ^ { 2} \alpha - \sin ^ { 2} \alpha } { \sin ^ { 4} \alpha - \cos ^ { 4} \alpha }#?

2 Answers
Sep 24, 2017

This equals #-1#

Explanation:

It's all about factoring the difference of squares.

#=((cosalpha + sin alpha)(cosalpha - sin alpha))/((sin^2alpha - cos^2alpha)(sin^2alpha + cos^2alpha))#

Because #sin^2x + cos^2x = 1#, we get:

#=((cosalpha + sin alpha)(cosalpha- sin alpha))/(sin^2alpha - cos^2alpha)#

#=((cosalpha + sin alpha)(cosalpha - sin alpha))/((sin alpha + cosalpha)(sin alpha - cosalpha)#

#= -1#

Hopefully this helps!

Sep 24, 2017

Given:

#(cos^2(alpha)-sin^2(alpha))/(cos^4(alpha)-sin^4(alpha)) =#

Factor the denominator, using the pattern (a^4-b^4) = (a^2-b^2)(a^2+b^2):

#(cos^2(alpha)-sin^2(alpha))/((cos^2(alpha)-sin^2(alpha))(cos^2(alpha)+sin^2(alpha))) =#

A factor in the denominator cancels the numerator:

#1/(cos^2(alpha)+sin^2(alpha)) =#

Use the identity #cos^2(x)+sin^2(x) = 1#

#1/1 = 1#