Evaluate the integral? : # int 1/( x^2sqrt(x^2-4) ) dx #
1 Answer
# int \ 1/( x^2sqrt(x^2-4) ) \ dx = sqrt(x^2-4)/(4x) + C #
Explanation:
We seek:
# I = int \ 1/( x^2sqrt(x^2-4) ) \ dx #
Because of the negative sign let us attempt the following substitution:
# x=2sec theta => x^2 = 4sec^2 theta #
And differentiating wrt
# (dx)/(d theta) =2sec theta tan theta #
Substituting into the integral we get:
# I = int \ 1/( (4sec^2theta)sqrt(4sec^2theta - 4) ) \ 2sec theta tan theta \ d theta #
# \ \ = 1/2 \ int \ 1/( secthetasqrt(4(sec^2theta - 1)) ) \ tan theta \ d theta #
# \ \ = 1/2 \ int \ 1/( secthetasqrt(4tan^2 theta) ) \ tan theta \ d theta #
# \ \ = 1/2 \ int \ 1/( sectheta(2tan theta) ) \ tan theta \ d theta #
# \ \ = 1/4 \ int \ 1/( sectheta ) \ d theta #
# \ \ = 1/4 \ int \ costheta \ d theta #
# \ \ = 1/4 \ sin theta + C # ..... [A]
We now have a simple solution, but we need to be able to restore the substitution; so we need to perform some further trigonometric manipulation. now:
# x=2sec theta => sec theta = x/2 #
# :. 1/(cos theta) = x/2 #
# :. cos theta = 2/x #
And using the pythagorean identity
# sin^2theta + (2/x)^2 = 1 #
# :. sin^2theta = 1 - 4/x^2 = (x^2-4)/x^2 #
# :. sin theta = sqrt((x^2-4)/x^2) = sqrt(x^2-4)/x#
And now using this result we can restore the earlier substitution in [A], to give:
# I = 1/4 \ sqrt(x^2-4)/x + C #
# \ \ = sqrt(x^2-4)/(4x) + C #