What is the rectangular form of the curve described by the parametric equations: #x = acostheta+bsintheta# and #y = bcostheta+asintheta# ?

3 Answers
Oct 7, 2017

Given
#x=acostheta + bsintheta.......[1]#

#y=bcostheta + asintheta........[2]#

From {1] we get

#costheta+b/asin theta=x/a....[5]#

From [2] we get

#costheta+a/bsin theta=y/b...[6]#

subtracting [6] from [5]

#sintheta(b/a-a/b)=(x/a-y/b)#

#sintheta=(bx-ay)/(b^2-a^2)...[7]#

similarly from [1]

#a/bcostheta+sintheta=x/b....[8]#

and from [2]

#b/acostheta+sintheta=y/a....[9]#

subtracting [9] from [8] we get

#costheta(a/b-b/a)=x/b-y/a#

#costheta=(ax-by)/(a^2-b^2)....[10]#

From [7] and [10] we get

#((bx-ay)/(b^2-a^2))^2+((ax-by)/(a^2-b^2))^2=sin^2theta+cos^2theta=1#

#=>b^2x^2+a^2y^2+a^2x^2+b^2y^2-4abxy=(a^2-b^2)^2#

#=>(x^2+y^2)(a^2+b^2)-4abxy=(a^2-b^2)^2#

#:. {(x+y)(a-b)}^2+{(x-y)(a+b)}^2=2(a^2-b^2)^2.#

Explanation:

We rewrite the given eqns. as,

#acostheta+bsintheta=x, and, bcostheta+asintheta=y.#

Solving these for #costheta, and, sintheta,# we get,

#2costheta=(x+y)/(a+b)+(x-y)/(a-b),#

and,

#2sintheta=(x+y)/(a+b)-(x-y)/(a-b).#

#:. (2costheta)^2+(2sintheta)^2=2{((x+y)/(a+b))^2+((x-y)/(a-b))^2}.#

#:. {(x+y)(a-b)}^2+{(x-y)(a+b)}^2=2(a^2-b^2)^2.#

Oct 7, 2017

#(a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-(a^2-b^2)^2 = 0#

Explanation:

Yet another way...

Given:

#x = acostheta+bsintheta#

#y = bcostheta+asintheta#

Then:

#xy = (acostheta+bsintheta)(bcostheta+asintheta)#

#color(white)(xy) = ab(cos^2theta+sin^2theta)+(a^2+b^2)costhetasintheta#

#color(white)(xy) = ab+(a^2+b^2)costhetasintheta#

So:

#costhetasintheta = (xy-ab)/(a^2+b^2)#

Also we find:

#x^2+y^2 = (acostheta+bsintheta)^2+(bcostheta+asintheta)^2#

#color(white)(x^2+y^2) = (a^2+b^2)(cos^2theta+sin^2theta)+4abcosthetasintheta#

#color(white)(x^2+y^2) = (a^2+b^2)+4abcosthetasintheta#

So:

#costhetasintheta = (x^2+y^2-(a^2+b^2))/(4ab)#

Putting these together, we find:

#(xy-ab)/(a^2+b^2) = (x^2+y^2-(a^2+b^2))/(4ab)#

Cross multiplying, this becomes:

#4ab(xy-ab) = (a^2+b^2)(x^2+y^2-(a^2+b^2))#

Hence:

#0 = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-((a^2+b^2)^2-4a^2b^2)#

#color(white)(0) = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-((a^4+2a^2b^2+b^4)-4a^2b^2)#

#color(white)(0) = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-(a^4-2a^2b^2+b^4)#

#color(white)(0) = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-(a^2-b^2)^2#

Notes

We can perform some simple checks on the answer by trying various combinations of #a# and #b#

For example, with #a=b# the original equations give us:

#x = acos theta + asin theta = y#

and the derived equation gives us:

#0 = (a^2+a^2)x^2+(a^2+a^2)y^2-4a^2xy-(a^2-a^2)^2#

#color(white)(0) = 2a^2(x^2+y^2-2xy)#

#color(white)(0) = 2a^2(x-y)^2#

hence #x = y#

For another example, with #b=0# the original equations give us:

#x = acos theta#

#y = asin theta#

which is the parametric form of a circle with radius #a# centred on the origin.

The derived equation gives us:

#0 = a^2x^2+a^2y^2-(a^2)^2 = a^2(x^2+y^2-a^2)#

That is:

#x^2+y^2 = a^2#

which is the standard form of the equation of a circle with radius #a# centred on the origin.