If #cosA=24/25# and #cosB=3/5# and #A# lies in #Q1#, find #cos(A+B)# and #cos(A-B)#?
2 Answers
Explanation:
As angles A and B are acute angles all trigonometric ratios are positive, hence
as
and as
Hence
=
and
=
Explanation:
#"since A and B are both acute then we are in the "#
#"first quadrant"#
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)cos(A+-B)=cosAcosB∓sinAsinB#
#cosA=24/25#
#•color(white)(x)sinA=sqrt(1-cos^2A)#
#color(white)(xxxxxx)=sqrt(1-(24/25)^2)#
#color(white)(xxxxxx)=sqrt(1-576/625)#
#color(white)(xxxxxx)=sqrt(49/625)=7/25#
#cosB=3/5#
#rArrsinB=sqrt(1-9/25)=sqrt(16/25)=4/5#
#rArrcos(A+B)=(24/25xx3/5)-(7/25xx4/5)#
#color(white)(xxxxxxxxxx)=72/125-28/125=44/125#
#rArrcos(A-B)=72/125+28/125=100/125=4/5#