Question #f1ea6

2 Answers
Oct 18, 2017

#lim_(x->1) (x^(n+1)-(n+1)x+n)/(x-1)^2 =(n(n+1))/2#

Explanation:

Simplify the function:

#(x^(n+1)-(n+1)x+n)/(x-1)^2 = (x^(n+1)-x -nx+n)/(x-1)^2#

#(x^(n+1)-(n+1)x+n)/(x-1)^2 = (x(x^n-1) -n(x-1))/(x-1)^2#

#(x^(n+1)-(n+1)x+n)/(x-1)^2 = [x/(x-1) (x^n-1)/(x-1)] -n/(x-1)#

Note that:

#(x^n-1)/(x-1) = 1+x+x^2+...+x^(n-1)#

so:

#(x^(n+1)-(n+1)x+n)/(x-1)^2 = [x/(x-1) ( 1+x+x^2+...+x^(n-1))] -n/(x-1)#

and finally:

#(1) " " (x^(n+1)-(n+1)x+n)/(x-1)^2 =( x+x^2+...+x^n -n)/(x-1)#

Consider now the function:

#f(x) = x+x^2+...+x^n #

Clearly #f(1) = n#, thus:

#lim_(x->1) (x^(n+1)-(n+1)x+n)/(x-1)^2 = lim_(x->1) ( x+x^2+...+x^n -n)/(x-1) = lim_(x->1) (f(x) -f(1))/(x-1)#

and by the definition of derivative:

#lim_(x->1) (x^(n+1)-(n+1)x+n)/(x-1)^2 = f'(1)#

As:

#f'(x) = 1+2x+...+nx^(n-1)#

we have:

#f'(1) = 1+2+...+n = (n(n+1))/2#

so:

#lim_(x->1) (x^(n+1)-(n+1)x+n)/(x-1)^2 =(n(n+1))/2#

Oct 18, 2017

We seek:

# lim_(x rarr 1)(x^(n+1)-(n+1)x+n)/(x-1)^2 = 1/2 n(n+1)#

Explanation:

We seek:

# L = lim_(x rarr 1)(x^(n+1)-(n+1)x+n)/(x-1)^2 #

Both the numerator and the denominator #rarr 0# as #x rarr 0#. thus the limit #L# (if it exists) is of an indeterminate form #0/0#, and consequently, we can apply L'Hôpital's rule to get:

# L = lim_(x rarr 1) ( d/dx( x^(n+1)-(n+1)x+n) ) / ( d/dx (x-1)^2 ) #

# \ \ = lim_(x rarr 1) ( (n+1)x^n - (n+1) ) / ( 2(x-1) ) #

Again, we have an indeterminate form, so we can apply L'Hôpital's rule again:

# L = lim_(x rarr 1) ( d/dx( (n+1)x^n - (n+1) ) ) / ( d/dx( 2(x-1) ) ) #

# \ \ = lim_(x rarr 1) ( n(n+1)x^(n-1) ) / ( 2x ) #

And we can now directly evaluate this limit:

# L = ( n(n+1) xx 1^(n-1) ) / ( 2xx1 ) #

# \ \ = ( n(n+1) ) / ( 2 ) #