How do you solve #\sin ( 2x ) - \cos ( 3x ) = 0#?

1 Answer
Oct 20, 2017

#x=npi+(-1)^npi/10# and #npi+(-1)^n(13pi)/10# where n belongs to Z.

Explanation:

Here, #sin2x-cos3x=0#

#rarr sin2x=cos3x#

#rarr 2sinx*cosx=4cos^3x-3cosx#

#rarr 2sinx*cosx=cosx(4cos^2x-3)#

#rarr 2sinx=4cos^2x-3#

#rarr 2sinx=4(1-sin^2x)-3#

#rarr 2sinx=4-4sin^2x-3#

#rarr 4sin^2x+2sinx-1=0#

Comparing it with #ax^2+bx+c=0# we have
#a=4# #b=2# and #c=-1#

Using quadratic formula

#sinx=(-b+-sqrt(b^2-4ac))/(2*a)#

#=(-2+-sqrt(2^2-4*4*(-1)))/(2*4)#

#=(-2+-sqrt(4+16))/8#

#=(-2+-sqrt(5*2^2))/8#

#=(-2+-2sqrt(5))/8#

Taking + sign we get

#sinx=(-2+2sqrt(5))/8#

#sinx=(sqrt(5)-1)/4#

#sinx=sin(pi/10)#

#x=npi+(-1)^npi/10#

Taking - sign we get

#sinx=(-2-2sqrt(5))/8#

#sinx=-(sqrt(5)+1)/4#

#sinx=sin((13pi)/10)#

#x=npi+(-1)^n(13pi)/10#

So the required solution is #npi+(-1)^npi/10# and #npi+(-1)^n(13pi)/10#.