Question #e662a

2 Answers
Oct 22, 2017

#dy/dx=(2xcos(x^2))/sin(x^2)#

Explanation:

To calculate the derivative of #log(sin(x^2))# we will use the chain rule.

The chain rule is #(color(red)V(color(orange)U(color(purple)x)))^'=color(red)V^'(color(orange)U(color(purple)x))*color(orange)U^'(color(purple)x) * (color(purple)x)^'#

#y=color(red)logcolor(orange)(sin(color(purple)x^color(purple)2))#

#dy/dx=d/dxcolor(red) log(color(orange) sin( color(purple)x^color(purple)2))*d/dxcolor(orange) sin(color(purple)x)^color(purple)2*d/dx(color(purple)(x)^color(purple)2)#

#dy/dx=1/sin(x^2)*cos(x^2)*2x#

#dy/dx=(2xcos(x^2))/sin(x^2)#

Oct 22, 2017

Let's see.

Explanation:

Given, #y=log(sinx^2)#

Now, differentiating w.r.t #x# and applying chain rule:

#dy/dx=d/dx(log(sinx^2))#

#:.dy/dx=1/(sinx^2)xxd/dx(sinx^2)#

#:.dy/dx=1/(sinx^2)xx(cosx^2)xxd/dx(x^2)#

#:.dy/dx=(cosx^2/sinx^2)xx(2x)#

#:.dy/dx=2xcdotcotx^2#. (Answer).

Hope it Helps:)