How do you prove #tan(x + (pi/2)) = -cotx#?

2 Answers
Apr 16, 2015

We can not simply use the tangent of a sum formula, because #tan (pi/2)# does not exist. See other answer for using the sum formula.

So use
#tan theta = sin theta / cos theta# and the sum formulas for sine and cosine.

#tan(x + pi/2) = (sin(x + pi/2))/(cos(x + pi/2))#
# = (sinx cos(pi/2)+cosx sin(pi/2))/(cosx cos(pi/2)-sinx sin(pi/2)) = (0+cosx)/(0-sinx ) = - cosx/sinx = -cotx#

Oct 25, 2017

If we really want to use the sum formula for tangent, then we can. See below.

Explanation:

We cannot simply apply the sum formula as #tan(x+pi/2) = (tanx+tan(pi/2))/(1-tanxtan(pi/2)# because #tan(pi/2)# does not exist.

But we can rewrite #x+pi/2 = (x+pi/4)+pi/4# and apply the sun formula twice.

For any #a# in the domain of the tangent function, we have:

#tan(a+pi/4) = (tana+tan(pi/4))/(1-tanatan(pi/4))#

# = (tana+1)/(1-tana)#

Therefore,
#tan(x+pi/2) = tan((x+pi/4)+pi/4)#

# = (tan(x+pi/4)+1)/(1-tan(x+pi/4))#

# = ([(tanx+1)/(1-tanx)]+1)/(1-[(tanx+1)/(1-tanx)])#

# = ([(tanx+1)/(1-tanx)]+1)/(1-[(tanx+1)/(1-tanx)])*(1-tanx)/(1-tanx)#

# = (tanx+1+1-tanx)/(1-tanx-(tanx+1))#

# = 2/(-2tanx)#

# = -cotx#