How do you differentiate #x-cos(x^2)+y^2/x+3x^5=4x^3#?
1 Answer
# dy/dx = (y^2+12x^4 - 15x^6 -x^2 - 2x^3 sin(x^2))/(2xy)#
Explanation:
We have:
# x-cos(x^2)+y^2/x+3x^5=4x^3 #
Method 1: Implicit differentiation, as is:
Differentiating wrt
# 1 + sin(x^2)(d/dx x^2) + ( (x)(d/dxy^2) - (y^2)(d/dx x) ) / (x)^2 + 15x^4 = 12x^2 #
# :. 1 + sin(x^2)(2x) + ( (x)(2ydy/dx) - (y^2)(1) ) / (x)^2 + 15x^4 = 12x^2 #
# :. 1 + 2x sin(x^2) + ( 2xydy/dx - y^2 ) / x^2 + 15x^4 = 12x^2 #
# :. ( 2xydy/dx - y^2 ) / x^2 = 12x^2 - 15x^4 - 1 - 2x sin(x^2)#
# :. 2xydy/dx - y^2 = 12x^4 - 15x^6 -1 - 2x^3 sin(x^2)#
# :. 2xydy/dx = y^2+12x^4 - 15x^6 -x^2 - 2x^3 sin(x^2)#
# :. dy/dx = (y^2+12x^4 - 15x^6 -x^2 - 2x^3 sin(x^2))/(2xy)#
Method 2: Implicit Function Theorem
Putting:
# F(x,y) = x-cos(x^2)+y^2/x+3x^5-4x^3 #
We have:
# (partial F)/(partial x) = 1 + 2xsin(x^2) - y^2/x^2 + 15x^4 - 12x^2 #
# (partial F)/(partial y) = (2y)/x#
Then:
# dy/dx = - ((partial F)/(partial x)) / ((partial F)/(partial y)) #
# \ \ \ \ \ \ = - (1 + 2xsin(x^2) - y^2/x^2 + 15x^4 - 12x^2) / ( (2y)/x ) #
# \ \ \ \ \ \ = - ( (x) (1 + 2xsin(x^2) - y^2/x^2 + 15x^4 - 12x^2) ) / (2y) #
Yielding the same result as above.