How do you differentiate #y=((2x)/(x-1))((3x+4)/(5x^2-7))#?
1 Answer
Nov 1, 2017
Explanation:
I would use logarithmic differentiation.
Taking the natural logarithm of both sides, we get:
#lny = ln((2x)/(x - 1))((3x +4)/(5x^2 - 7))#
#lny = ln(2x) - ln(x- 1) + ln(3x +4) - ln(5x^2 - 7)#
Now differentiate.
#1/y(dy/dx) = 1/x - 1/(x- 1) + 3/(3x + 4) - (10x)/(5x^2 - 7)#
#dy/dx = y(1/x -1/(x- 1) + 3/(3x + 4) - (10x)/(5x^2 - 7))#
#dy/dx = (2x)/(x -1)(3x +4)/(5x^2 - 7)(1/x - 1/(x - 1) + 3/(3x + 4) - (10x)/(5x^2 - 7))#
Hopefully this helps!