How do you simplify and divide (2c^3-3c^2+3c-4)div(c-2)(2c33c2+3c4)÷(c2)?

1 Answer
Nov 2, 2017

2c^2+c+5+6/(c-2)2c2+c+5+6c2

Explanation:

"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator

"consider the numerator"consider the numerator

color(red)(2c^2)(c-2)color(magenta)(+4c^2)-3c^2+3c-42c2(c2)+4c23c2+3c4

=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(magenta)(+2c)+3c-4=2c2(c2)+c(c2)+2c+3c4

=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)color(magenta)(+10)-4=2c2(c2)+c(c2)+5(c2)+104

=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)+6=2c2(c2)+c(c2)+5(c2)+6

"quotient "=color(red)(2c^2+c+5)," remainder "=6quotient =2c2+c+5, remainder =6

rArr(2c^3-3c^2+3c-4)/(c-2)=2c^2+c+5+6/(c-2)2c33c2+3c4c2=2c2+c+5+6c2