How do you find the remaining trigonometric functions of #theta# given #costheta=sqrt2/2# and #theta# terminates in QI?
1 Answer
Nov 8, 2017
Explanation:
#"using "sin^2theta+cos^2theta=1#
#rArrsintheta=+-sqrt(1-cos^2theta)#
#"since "theta" is in first quadrant then all ratios are positive"#
#costheta=sqrt2/2#
#•color(white)(x)rArrsintheta=+sqrt(1-((sqrt2)/2)^2)#
#color(white)(rArrsinthetaxxx)=sqrt(1-1/2)=sqrt(1/2)=1/sqrt2=sqrt2/2#
#•color(white)(x)tantheta=sintheta/costheta=(sqrt2/2)/(sqrt2/2)=1#
#•color(white)(x)cottheta=1/tantheta=1#
#•color(white)(x)sectheta=1/costheta=1/(sqrt2/2)=2/sqrt2=sqrt2#
#•color(white)(x)csctheta=1/sintheta=1/(sqrt2/2)=sqrt2#