How do you find the range of #f(x)=[3x-4]# if the domain is (0, 1, 2, 3)?

1 Answer
Nov 14, 2017

See a solution process below:

Explanation:

To find the range, substitute each value of the domain into the formula and calculate the result:

For x = 0

#f(0) = [(3 xx 0) - 4]#

#f(0) = [0 - 4]#

#f(0) = -4#

For x = 1

#f(1) = [(3 xx 1) - 4]#

#f(1) = [1 - 4]#

#f(1) = -3#

For x = 2

#f(2) = [(3 xx 2) - 4]#

#f(2) = [6 - 4]#

#f(2) = 2#

For x = 3

#f(3) = [(3 xx 3) - 4]#

#f(3) = [9 - 4]#

#f(3) = 5#

Therefore, the Range is: #{-4, -3, 2, 5}#