How do you test the series #sum_(n=1)^oo n/(n^2+2)# for convergence?

1 Answer
Nov 19, 2017

This series diverges by the integral test.

Explanation:

Note that:

#x = 1/2 d/(dx) (x^2+2)#

So:

#int x/(x^2+2) dx = 1/2 ln abs(x^2+2) + C -> oo# as #x->oo#

So #sum_(n=1)^oo n/(n^2+2)# diverges by the integral test.

Alternatively, note that:

#sum_(n=1)^oo n/(n^2+2) = sum_(n=1)^oo 1/(n+2/n) >= sum_(n=1)^oo 1/(n+2) = sum_(n=3)^oo 1/n#

which diverges.