How do you test the series #sum_(n=1)^oo n/(n^2+2)# for convergence?
1 Answer
Nov 19, 2017
This series diverges by the integral test.
Explanation:
Note that:
#x = 1/2 d/(dx) (x^2+2)#
So:
#int x/(x^2+2) dx = 1/2 ln abs(x^2+2) + C -> oo# as#x->oo#
So
Alternatively, note that:
#sum_(n=1)^oo n/(n^2+2) = sum_(n=1)^oo 1/(n+2/n) >= sum_(n=1)^oo 1/(n+2) = sum_(n=3)^oo 1/n#
which diverges.