What is the derivative of? : # d/dx (x^2 + 1)^(x) #

1 Answer
Nov 28, 2017

# d/dx (x^2 + 1)^(x) = ((2x^2)/(x^2+1) + ln(x^2+1) )(x^2 + 1)^(x)#

Explanation:

Let:

# y = (x^2 + 1)^(x) #

Taking natural logarithms of both sides:

# lny = ln {(x^2 + 1)^(x)} #

And using the properties of logarithms we have:

# lny = xln (x^2 + 1) #

We now differentiate wrt #x# and apply the product rule:

# d/dx lny = (x)(d/dx ln (x^2 + 1)) + (d/dx x)(ln (x^2 + 1))#

Then using the chain rule this becomes:

# 1/y \ dy/dx = x * 1/(x^2+1) * 2x + 1 * ln(x^2+1) #

# :. dy/dx = y{(2x^2)/(x^2+1) + ln(x^2+1) }#

# :. dy/dx = ((2x^2)/(x^2+1) + ln(x^2+1) )(x^2 + 1)^(x)#