If # tan 2\beta = - \sqrt 3# and # 0 <= \beta <= \pi#, what is #\beta# ?

1 Answer
Dec 2, 2017

#pi/3; (5pi)/6#

Explanation:

#tan 2t = - sqrt3#
Use trig identity:
#tan 2t = (2tan t)/(1 - tan^2 t)#
In this case:
#- sqrt3 = (2tan t)/(1 - tan^2 t)#
#-sqrt3 + sqrt3tan^2 t = 2tan t#
#sqrt3tan^2 t - 2tan t - sqrt3 = 0#
Solve this quadratic equation for tan t by using the improved quadratic formula (Socratic, Google Search):

#D = d^2 = b^2 - 4ac = 4 + 12 = 16# --> #d = +- 4#
There are 2 real roots:
#tan t = -b/(2a) +- d/(2a) = 2/(2sqrt3) +- 4/(2sqrt3) = #
#= (sqrt3+- 2sqrt3)/3#. Two solutions:
#tan t = sqrt3#, and #tan t = - sqrt3/3#
Inside the interval #[0, pi]# , trig table and unit circle give 2 answers:
#t = pi/3# and #t = (5pi)/6#