Evaluate the integral #int x^2/(1-x^2)^(1/2) dx #?
3 Answers
Explanation:
Method I : Using Trigonometris Substitution.
Let,
Sub.ing
Since,
# int \ x^2/(1-x^2)^(1/2) \ dx =1/2arcsin(x) - 1/2 xsqrt(1-x^2) + C #
Explanation:
Se week:
# I = int \ x^2/(1-x^2)^(1/2) \ dx #
Which we can write as:
# I = int \ (1+x^2-1)/sqrt(1-x^2) \ dx#
# \ \ = int \ (1-(1-x^2))/sqrt(1-x^2) \ dx#
# \ \ = int \ 1/sqrt(1-x^2) - sqrt(1-x^2) \ dx#
The first integrand is a standard integral. so we have:
# \ \ = arcsin(x) - int \ sqrt(1-x^2) \ dx #
For the second integral, consider:
# J = int \ sqrt(1-x^2) #
and perform a substitution, Let:
# x = sin theta => (dx)/(d theta)=cos theta #
Substituting we get:
# J = int \ sqrt(1-sin^2 theta) cos theta \ d theta #
# \ \ = int \ cos^2 theta \ d theta #
# \ \ = int \ 1/2(cos2 theta -1) \ d theta #
# \ \ = 1/2( (sin 2theta)/2+theta) #
And restoring the substitution we find:
# J = 1/2( (2xsqrt(1-x^2))/2 + arcsinx) #
# \ \ = 1/2( xsqrt(1-x^2) + arcsinx) #
Using this result in conjunction with the earlier result we then have:
# I = arcsin(x) - 1/2( xsqrt(1-x^2) + arcsinx) + C #
# \ \ = 1/2arcsin(x) - 1/2 xsqrt(1-x^2) + C #
Explanation:
Method II : Without Substitution.
We have,