Evaluate the integral #int x^2/(1-x^2)^(1/2) dx #?

3 Answers
Dec 10, 2017

# 1/2{arc sinx-xsqrt(1-x^2)}+C.#

Explanation:

Method I : Using Trigonometris Substitution.

Let, #I=intx^2/(1-x^2)^(1/2)dx.#

Sub.ing #x=siny rArr dx=cosydy.#

#:. I=intsin^2y/(1-sin^2y)^(1/2) cosydy,#

#=intsin^2y/cosy cosydy,#

#=intsin^2ydy,#

#=int(1-cos2y)/2dy,#

#=1/2{y-(sin2y)/2},#

#=1/2{y-1/2*2sinycosy},#

#=1/2{y-sinysqrt(1-sin^2y)}.#

Since, #x=siny, i.e., y=arc sinx,#

# I=1/2{arc sinx-xsqrt(1-x^2)}+C.#

Dec 10, 2017

# int \ x^2/(1-x^2)^(1/2) \ dx =1/2arcsin(x) - 1/2 xsqrt(1-x^2) + C #

Explanation:

Se week:

# I = int \ x^2/(1-x^2)^(1/2) \ dx #

Which we can write as:

# I = int \ (1+x^2-1)/sqrt(1-x^2) \ dx#
# \ \ = int \ (1-(1-x^2))/sqrt(1-x^2) \ dx#
# \ \ = int \ 1/sqrt(1-x^2) - sqrt(1-x^2) \ dx#

The first integrand is a standard integral. so we have:

# \ \ = arcsin(x) - int \ sqrt(1-x^2) \ dx #

For the second integral, consider:

# J = int \ sqrt(1-x^2) #

and perform a substitution, Let:

# x = sin theta => (dx)/(d theta)=cos theta #

Substituting we get:

# J = int \ sqrt(1-sin^2 theta) cos theta \ d theta #
# \ \ = int \ cos^2 theta \ d theta #
# \ \ = int \ 1/2(cos2 theta -1) \ d theta #
# \ \ = 1/2( (sin 2theta)/2+theta) #

And restoring the substitution we find:

# J = 1/2( (2xsqrt(1-x^2))/2 + arcsinx) #
# \ \ = 1/2( xsqrt(1-x^2) + arcsinx) #

Using this result in conjunction with the earlier result we then have:

# I = arcsin(x) - 1/2( xsqrt(1-x^2) + arcsinx) + C #
# \ \ = 1/2arcsin(x) - 1/2 xsqrt(1-x^2) + C #

Dec 10, 2017

# -x/2sqrt(1-x^2)+1/2arc sinx+C,#

Explanation:

Method II : Without Substitution.

We have, #I=intx^2/(1-x^2)^(1/2) dx,#

#=-int(-x^2)/sqrt(1-x^2)dx,#

#=-int((1-x^2)-1}/sqrt(1-x^2) dx,#

#=-int{(1-x^2)/sqrt(1-x^2)-1/sqrt(1-x^2)}dx,#

#=-intsqrt(1-x^2)dx+int1/sqrt(1-x^2)dx,#

#-{x/2sqrt(1-x^2)+1/2arc sinx}+arc sinx,#

#=-x/2sqrt(1-x^2)-1/2arc sinx+arc sinx,#

#=-x/2sqrt(1-x^2)+1/2arc sinx+C,# as in Method I !