What is the solution of the differential equation # dy/dx = 2y(5-3y) # with #y(0)=2#?

2 Answers
Dec 21, 2017

# y = (10e^(10x))/(6e^(10x)-1) #

Explanation:

We have:

# dy/dx = 2y(5-3y) #

This is a First Order Separable ODE, so we can "separate the variables" to get

# int \ 1/(y(5-3y)) \ dy = int \ 2 \ dx #

The RHS is trivial, and the LHS can be integrated by decomposing the integrand into partial fractions:

# 1/(y(5-3y)) -= A/y+ B/(5-3y) #
# " " = (A(5-3y)+By)/(y(5-3y)) #

Leading to the identity:

# 1 -= A(5-3y)+By #

Where #A,B# are constants that are to be determined. We can find them by substitutions (In practice we do this via the "cover up" method:

Put # y =0 => 1=5A => A=1/5#
Put # x = 5/3 => 1 = (5B)/3 => B = 3/5 #

So we can now write:

# \ \ \ \ \ \ \ \ \int \ (1/5)/y + (3/5)/(5-3y) \ dy = int \ 2 \ dx #

# :. 1/5 int \ 1/y - 3/(3y-5) \ dy = int \ 2 \ dx #

And integrating we get:

# 1/5 { ln|y| - ln|3y-5|} = 2x + C #

Using the initial condition #y(0)=2# then:

# 1/5 { ln2 - ln1} = C => C= 1/5ln 2#

So we have:

# 1/5 { ln|y| - ln|3y-5|} = 2x + 1/5ln 2 #

# :. ln|y| - ln|3y-5| = 10x + ln 2 #

# :. ln|y/(3y-5)| = 10x + ln 2 #

# :. y/(3y-5) = e^(10x + ln 2) #

# :. y = (3y-5) 2e^(10x) #

# :. y = 6ye^(10x) - 10e^(10x) #

# :. 6ye^(10x) - y = 10e^(10x) #

# :. (6e^(10x)-1)y = 10e^(10x) #

# :. y = (10e^(10x))/(6e^(10x)-1) #

Dec 21, 2017

#y(x) = 10/(6-e^(-10x))#

Explanation:

This is a separable differential equation:

#dy/dx = 2y(5-3y)#

#dy/(2y(5-3y)) = dx#

#(1) " " int dy/(2y(5-3y)) = int dx#

Solve the integral in #y# using partial fractions:

#1/(2y(5-3y)) = A/(2y) + B/(5-3y)#

#1/(2y(5-3y)) = (A(5-3y)+2By)/(2y(5-3y))#

#y(2B-3A) +5A=1#

#{(2B-3A=0),(5A=1):}#

#{(A=1/5),(B=3/10):}#

#int dy/(2y(5-3y)) = 1/10int dy/y+3/10int dy/(5-3y)#

#int dy/(2y(5-3y)) = 1/10(int dy/y-int (d(5-3y))/(5-3y))#

#int dy/(2y(5-3y)) = 1/10(lnabsy-lnabs(5-3y)) + C#

#int dy/(2y(5-3y)) =-1/10lnabs(5/y-3) + C#

Substituting in #(1)#:

#x = -1/10lnabs(5/y-3) + C#

#-10x+C =lnabs(5/y-3) #

#ce^(-10x) = 5/y-3#

#5/y =3+ce^(-10x)#

#y =5/(3+ce^(-10x))#

For #x=0# the initial condition is #y(0)=2#, so:

#2=5/(3+c)#

#c=-1/2#

The required solution is then:

#y(x) = 10/(6-e^(-10x))#