A line segment has endpoints at #(7 ,5 )# and #(2 ,6)#. If the line segment is rotated about the origin by #(pi )/2 #, translated vertically by #3 #, and reflected about the x-axis, what will the line segment's new endpoints be?

1 Answer
Jan 6, 2018

#(-5,-10)" and "(-6,-5)#

Explanation:

#"since there are 3 transformations to be performed label"#
#"the points"#

#A(7,5)" and "B(2,6)#

#color(blue)"first transformation"#

#"under a rotation about the origin of "pi/2#

#• " a point "(x,y)to(-y,x)#

#rArrA(7,5)toA'(-5,7)#

#rArrB(2,6)toB'(-6,2)#

#color(blue)"second transformation"#

#"under a translation "((0),(3))#

#• " a point "(x,y)to(x,y+3)#

#rArrA'(-5,7)toA''(-5,10)#

#rArrB'(-6,2)toB''(-6,5)#

#color(blue)"third transformation "#

#"under a reflection in the x-axis"#

#• " a point "(x,y)to(x,-y)#

#rArrA''(-5,10)toA'''(-5,-10)#

#rArrB''(-6,5)toB'''(-6,-5)#

#"under all 3 transformations"#

#(7,5)to(-5,-10)" and "(2,6)to(-6,-5)#