Evaluate the integral? : # int_0^2 xsqrt(2x-x^2) dx #
2 Answers
# int_0^2 \ xsqrt(2x-x^2) \ dx = pi/2 #
Explanation:
Consider the indefinite integral:
# I = int \ xsqrt(2x-x^2) \ dx #
Which we can write as:
# I = int \ (x-1)sqrt(2x-x^2) + sqrt(2x-x^2) \ dx #
# \ \ = int \ (x-1)sqrt(2x-x^2) \ dx + int \ sqrt(2x-x^2) \ dx #
For the first integral, we have:
# I_1 = int \ (x-1)sqrt(2x-x^2) \ dx #
we can use a substitution, Let:
# u = 2x-x^2 => (du)/dx = 2-2x = -2(x-1) #
And if we perform this substitution then we get:
# I_1 = int \ (-1/2) sqrt(u) \ du #
# \ \ \ = -1/2 u^(3/2)/(3/2) #
# \ \ \ = -1/3 u^(3/2) #
And restoring the substitution we get:
# I_1 = -1/3 (2x-x^2)^(3/2) #
Next we consider the second integral,
# I_2 = int \ sqrt(2x-x^2) \ dx #
# \ \ \ = int \ sqrt(1-(x-1)^2) \ dx #
And here we can perform a substitution; Let
# sin theta=x-1 => (d theta)/(dx)cos theta=1 #
And if we perform this substitution then we get:
# I_2 = int \ sqrt(1-sin^2 theta) \ (cos theta) \ d theta #
# \ \ \ = int \ cos^2 theta \ d theta #
# \ \ \ = int \ (cos(2theta)+1)/2 \ d theta #
# \ \ \ = (sin2theta + theta)/2 #
And restoring the substitution we find that
# I_2 = (arcsin(x-1) + (x-1)sqrt((x-1)-(x-1)^2))/2 #
# \ \ \ = (arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 #
Combining our two results we then gave:
# I = (arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 -1/3 (2x-x^2)^(3/2)#
Given this result we then have:
# int_0^2 \ xsqrt(2x-x^2) \ dx = [(arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 -1/3 (2x-x^2)^(3/2)]_0^2 #
# " " = 1/2((arcsin1 - arcsin(-1)) #
# " " = 1/2(pi/2-(-pi/2)) #
# " " = pi/2 #
Explanation:
=
After using
=
=
=
=
=
=
=
=