How do you show that the Mean Value theorem applies to #f(x) = xsqrt(6-x)# on the interval #[0,6]#, and find a value of #c# guaranteed by this theorem?

2 Answers
Jan 27, 2018

#c=1.946654# or #5.490467#

Explanation:

Mean Valuetheorem states that a continuous function on a closed, bounded interval has at least one point where it is equal to its average value on the interval.

Mathematically speaking if a function #f(x)# is a continuous function on the closed, bounded interval #[a,b]#, then there is at least one number #c# in #(a,b)# for which

#f(c)=1/(b-a)int_a^bf(x)dx#

Here #f(x)=xsqrt(6-x)# is continuous over #[0,6]#

to workout #c#, let us work out #int_0^6xsqrt(6-x)dx#

Assume #u=x# then #du=dx# and #v=(6-x)^(3/2)# then #dv=-3/2sqrt(6-x)dx#

Now using integration by parts as #intudv=uv-intvdu#, we have

#-3/2intxsqrt(6-x)dx=x(6-x)^(3/2)-int(6-x)^(3/2)dx#

or #-3/2intxsqrt(6-x)dx=x(6-x)^(3/2)-(-2/5(6-x)^(5/2))#

or #intxsqrt(6-x)dx=-2/3[x(6-x)^(3/2)+2/5(6-x)^(5/2)]#

= #-2/3(6-x)^(3/2)[x+2/5(6-x)]=-2/15(6-x)^(3/2)[5x+12-2x]#

= #-2/5(6-x)^(3/2)(x+4)#

and #int_0^6xsqrt(6-x)dx#

= #-2/5[(6-x)^(3/2)(x+4)]_0^6#

= #2/5[6^(3/2)xx4]=8/5*6^(3/2)=48/5sqrt6#

and #f(c)=48/5sqrt6/6=(8sqrt6)/5#

or #csqrt(6-c)=(8sqrt6)/5#

or #25c^2(6-c)=384#

or #25c^3-150c^2+384=0#

and using Goal seek in MSExcel, we get

#c=1.94665399787863# or #5.49046652705594#

Jan 27, 2018

The value of #c=4#

Explanation:

The mean value theorem states that if #f(x)# is a continuous on the interval #I=[a,b]# and differentiable on the interval #(a,b)#, then
there exists # c in (a,b)# such that

#f'(c)=(f(b)-f(a))/(b-a)#.

Here,

#f(x)=xsqrt(6-x)#

#f(x)# is the product of continuous and differentiable functions

The domain of #f(x)# is #D_(f(x))=(-oo,6]#

#I=[0,6]#

#f(0)=0*sqrt6=0#

#f(6)=6*sqrt(6-6)=6*0=0#

Therefore,

#f'(x)=sqrt(6-x)-x/(2sqrt(6-x))=(2(6-x)-x)/(2sqrt(6-x))#

#=(12-3x)/(2sqrt(6-x))#

Then,

#EE c# such that

#(12-3c)/(2sqrt(6-c))=(f(6)-f(0))/(6-0)=0#

#12-3c=0#

#c=4#

This is also, Rolle's theorem.

graph{xsqrt(6-x) [-5.12, 14.88, -2, 8]}