#"what we have to do here is "color(blue)"compare ""the distance (d)"#
#"to the "color(blue)"sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii "< d" then no overlap"#
#"before calculating d we require to find the centre of B"#
#"under the given translation"#
#"under a translation "<-3,4>#
#(4,5)to(4-3,5+4)to(1,9)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(7,2)" and "(x_2,y_2)=(1,9)#
#d=sqrt((1-7)^2+(9-2)^2)=sqrt(36+49)~~9.22#
#"sum of radii "=4+3=7#
#"since sum of radii"< d" then no overlap"#
#"min. distance "=d-"sum of radii"#
#color(white)("min. distance ")=9.22-7=2.22#
graph{((x-7)^2+(y-2)^2-16)((x-1)^2+(y-9)^2-9)=0 [-40, 40, -20, 20]}