How do you find #dy/dx# if #cosy=e^(x+y)#?
1 Answer
Feb 23, 2018
#dy/dx=-(e^xe^y)/(e^xe^y+sin(y))#
Explanation:
We want to
#cos(y)=e^(x+y)#
Differentiate the left side by the chain rule
#LHS=d/dxcos(y)=-dy/dxsin(y)#
Differentiate the right side by the chain and product rule
#RHS=d/dxe^(x+y)=d/dxe^xe^y=e^xe^y+dy/dxe^xe^y#
These sides should equal
#-dy/dxsin(y)=e^xe^y+dy/dxe^xe^y#
#=>dy/dxe^xe^y+dy/dxsin(y)=-e^xe^y#
#=>dy/dx(e^xe^y+sin(y))=-e^xe^y#
#=>dy/dx=-(e^xe^y)/(e^xe^y+sin(y))#