How do you solve the following linear system: # - 12x + y = 15 , 36x + 22y = 3 #?

2 Answers
Mar 3, 2018

See a solution process below:

Explanation:

Step 1) Solve both the equations for #36x#

  • Equation 1:

#-12x + y = 15#

#color(red)(-3)(-12x + y) = color(red)(-3) xx 15#

#(color(red)(-3) xx -12x) + (color(red)(-3) xx y) = -45#

#36x + (-3y) = -45#

#36x - 3y = -45#

#36x - 3y + color(red)(3y) = -45 + color(red)(3y)#

#36x - 0 = -45 + 3y#

#36x = -45 + 3y#

  • Equation 2:

#36x + 22y = 3#

#36x + 22y - color(red)(22y) = 3 - color(red)(22y)#

#36x + 0 = 3 - 22y#

#36x = 3 - 22y#

Step 2) Because the left side of both equations are the same we can equate the right side of each equation and solve for #y#:

#-45 + 3y = 3 - 22y#

#-45 + color(red)(45) + 3y + color(blue)(22y) = 3 + color(red)(45) - 22y + color(blue)(22y)#

#0 + (3 + color(blue)(22))y = 48 - 0#

#25y = 48#

#(25y)/color(red)(25) = 48/color(red)(25)#

#(color(red)(cancel(color(black)(25)))y)/cancel(color(red)(25)) = 48/25#

#y = 48/25#

Step 3) Substitute #48/25# for #y# in the solution to either equation in Step 1 and solve for #x#:

#36x = 3 - 22y# becomes:

#36x = 3 - (22 xx 48/25)#

#36x = (25/25 xx 3) - (22 xx 48/25)#

#36x = 75/25 - 1056/25)#

#36x = -981/25#

#1/36 xx 36x = 1/36 xx -981/25#

#36/36x = -981/900#

#x = -981/900#

The Solution Is:

#x = -981/900# and #y = 48/25#

Or

#(-981/900, 48/25)#

#x=-1.09, y=1.92#

Explanation:

#-12x+y=15#-----(1)
#36x+22y=3#-----(2)
#-36x+3y=45#----(3)=3(1)
#25y=48#-------(4)=(2)+(3)
#y=48/25=1.92#-------(5)=(4)/25
#-12x+y=15#-----(1)
#-12x+1.92=15" "#Substitute for y
#-12x=15-1.92" "#Transpose 1.92
#-12x=13.08#
#x=13.08/-12=-1.09#

Thus,
#x=-1.09, y=1.92#
#-12xx(-1.09)+1.92=15#Checked
#36xx(-1.09)+22xx1.92=3#Checked