Step 1) Solve both the equations for #36x#
#-12x + y = 15#
#color(red)(-3)(-12x + y) = color(red)(-3) xx 15#
#(color(red)(-3) xx -12x) + (color(red)(-3) xx y) = -45#
#36x + (-3y) = -45#
#36x - 3y = -45#
#36x - 3y + color(red)(3y) = -45 + color(red)(3y)#
#36x - 0 = -45 + 3y#
#36x = -45 + 3y#
#36x + 22y = 3#
#36x + 22y - color(red)(22y) = 3 - color(red)(22y)#
#36x + 0 = 3 - 22y#
#36x = 3 - 22y#
Step 2) Because the left side of both equations are the same we can equate the right side of each equation and solve for #y#:
#-45 + 3y = 3 - 22y#
#-45 + color(red)(45) + 3y + color(blue)(22y) = 3 + color(red)(45) - 22y + color(blue)(22y)#
#0 + (3 + color(blue)(22))y = 48 - 0#
#25y = 48#
#(25y)/color(red)(25) = 48/color(red)(25)#
#(color(red)(cancel(color(black)(25)))y)/cancel(color(red)(25)) = 48/25#
#y = 48/25#
Step 3) Substitute #48/25# for #y# in the solution to either equation in Step 1 and solve for #x#:
#36x = 3 - 22y# becomes:
#36x = 3 - (22 xx 48/25)#
#36x = (25/25 xx 3) - (22 xx 48/25)#
#36x = 75/25 - 1056/25)#
#36x = -981/25#
#1/36 xx 36x = 1/36 xx -981/25#
#36/36x = -981/900#
#x = -981/900#
The Solution Is:
#x = -981/900# and #y = 48/25#
Or
#(-981/900, 48/25)#