Evaluate using Pythagorean identities?

Find #sintheta# and #costheta# if #tantheta#=#1/5# and #sintheta#>0

2 Answers
Mar 4, 2018

#sintheta=1/sqrt(26)# and #costheta=5/sqrt(26)#

Explanation:

Note: Here, I take #x=theta#.

The Pythagorean identities are:

#sin^2x+cos^2x=1#

#tan^2x+1=sec^2x#

#1+cot^2x=csc^2x#

We'll use equation 2 first:

#tan^2x+1=sec^2x#

Here, #tanx=1/5# and so #tan^2x=1/25#. Inputting that into the earlier formula:

#sec^2x=1/25+1=26/25#, so:

#secx=sqrt(26)/5#, and as #secx=1/cosx#, we know that:

#color(red)(cosx=5/sqrt(26))#

Now we use equation 1:

#sin^2x+cos^2x=1#

So, we can say that:

#sin^2x=1-cos^2x#. Here, #cosx=5/sqrt(26)# and so #cos^2x=25/26#. Inputting:

#sin^2x=1-25/26#

#sin^2x=1/26#

#color(red)(sinx=1/sqrt(26))#

Mar 4, 2018

#cos t = 5/sqrt26#
#sin t = 1/sqrt26#

Explanation:

#tan t = 1/5#
#cos^2 t = 1/(1 + tan^2 t) = 1/(1 + 1/25) = 25/26#
#cos t = +- 5/sqrt26#
Since tan t > 0 and sin t > 0, therefor, cos t > 0
#cos t = 5/sqrt26#
#sin t = tan t.cos t = (1/5)(5/sqrt26) = 1/sqrt26#