How do you find the exact relative maximum and minimum of the polynomial function of #p(x) =80+108x-x^3 #?

1 Answer
Mar 5, 2018

#"maximum at "(6,512)#
#"minimum at "(-6,-352)#

Explanation:

#"to determine turning points, differentiate and equate"#
#"to zero"#

#rArrp'(x)=108-3x^2#

#rArr3(36-x^2)=0#

#rArr3(x-6)(x+6)=0rArrx=+-6#

#p(6)=80+648-216=512#

#p(-6)=80-648+216=-352#

#"turning points at "(6,512)" and "(-6,-352)#

#"to determine the nature of the turning points"#

#"use the "color(blue)"second derivative test"#

#• " if "p(x)>0" then minimum turning point"#

#• " if "p(x)<0" then maximum turning point"#

#p''(x)=-6x#

#p''(6)=-36<0" hence maximum"#

#p''(-6)=36>0" hence minimum"#

#"maximum at "(6,512)," minimum at "(-6,-352)#