Result of the derivative of #-(cos x)/(sin x)^2# ?

I tried to solved it but i'm not sure if it's wright. Would really appreciatte if someone could give the correct result

2 Answers
Mar 6, 2018

#d/dx ( -cosx/sin^2x) = (1+cos^2x)/sin^3x#

Explanation:

Using the quotient rule:

#d/dx ((f(x))/(g(x))) = (g(x) (df)/dx - f(x) (dg)/(dx))/(g^2(x))#

we have:

#d/dx ( -cosx/sin^2x) = -( sin^2x d/dx cosx - cosx d/dx sin^2x)/sin^4x#

#d/dx ( -cosx/sin^2x) = ( sin^3x + 2sinx cos^2x )/sin^4x#

simplify:

#d/dx ( -cosx/sin^2x) = ( sin^2x + 2 cos^2x )/sin^3x#

We can write the results in different ways:

#d/dx ( -cosx/sin^2x) = 1/sinx + 2cos^2x /sin^3x = cscx+2secx cot^3x#

or:

#d/dx ( -cosx/sin^2x) = ( sin^2x +cos^2 x+ cos^2x )/sin^3x = (1+cos^2x)/sin^3x#

#d/dx ( -cosx/sin^2x) = (1+cos^2x)/(sinx(1-cos^2x))#

#d/dx ( -cosx/sin^2x) = 1/sinx(1+(1+cos2x)/2)/(1-(1 + cos2x)/2)#

#d/dx ( -cosx/sin^2x) = 1/sinx(3+cos2x)/(1- cos2x)#

Mar 6, 2018

#y=color(red)('-')#, then,
#color(blue)((1+cos^2x)/sin^3x)#

Explanation:

#(1)y=color(red)(-)cosx/(sinx)^2=-1/sinx*cosx/sinx=-cscx*cotx#
#(dy)/(dx)=-[cscx*d/(dx)(cotx)+cotx*d/(dx)(cscx)]#
#(dy)/(dx)=-[cscx*(-csc^2x)+cotx*(-cscxcotx)]#
#(dy)/(dx)=color(red)(csc^3x+cscx*cot^2x=cscx(csc^2x+cot^2x))#
Second method:
#y=-[(cosx)/sin^2x]#
#(dy)/(dx)=-[((sin^2x)d/(dx)(cosx)-cosxd/(dx)(sin^2x))/(sin^2x)^2]#
#=-[(sin^2x(-sinx)-cosx*2sinxcosx)/(sin^4x)]#
#=[(sin^3x+2sinxcos^2x)/(sin^4x)]=(sin^2x+2cos^2x)/sin^3x=color(blue)((1+cos^2x)/sin^3x)#