How do you find dy/dx given #y=ln(cos x)#?
2 Answers
Mar 9, 2018
Explanation:
Given:
Let
Then,
By chain rule
Thus
Mar 9, 2018
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"Given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#y=ln(cosx)#
#rArrdy/dx=1/cosx xxd/dx(cosx)#
#color(white)(rArrdy/dx)=-sinx/cosx=-tanx#