Can you help me integrate this, its something to do with hyperbolics?

#int_0.5^1.3sqrt(4x^2 -1)dx#

2 Answers
Mar 13, 2018

The answer is #=1.16#

Explanation:

First compute the indefinite integral

Let #2x=cosh(u)#, #=>#, #2dx=sinh(u)du#

#sinh(u)=sqrt(cosh^2(u)-1)#

Therefore,

#intsqrt(4x^2-1)dx=1/2intsqrt(cosh^2u-1)*sinhudu#

#=1/2intsinh^2udu#

But,

#cosh2u=1+2sinh^2u#

#sinh^2u=1/2(cosh2u-1)#

Therefore,

#intsqrt(4x^2-1)dx=1/2int(1/2(cosh2u-1))du#

#=1/8sinh2u-1/4u#

#=1/8*2*sqrt(4x^2-1)*2x-1/4arccosh(2x)+C#

#=1/2xsqrt(4x^2-1)-1/4arccosh(2x)+C#

Now, compute the definite integral

#int_0.5^1.3sqrt(4x^2-1)dx=[1/2xsqrt(4x^2-1)-1/4arccosh(2x)]_0.5^1.3#

#=(1/2*1.3sqrt(4*1.3^2-1)-1/4arccosh(2*1.3))-(1/2*0.5sqrt(4*0.5^2-1)-1/4arccosh(2*0.5))#

#=1.16#

Mar 13, 2018

#int_0.5^1.3 sqrt(4x^2-1) dx = 1.56-1/4 cosh^(-1) 2.6 ~~ 1.15764 #

Explanation:

Note that:

#sinh^2 t = cosh^2 t - 1 = 1/2 (-1 + cosh 2t)#

#sinh 2t = 2sinh t cosh t#

So let's try a hyperbolic substitution:

#x = 1/2 cosh u#

#dx/(du) = 1/2 sinh u#

Note that for the given integration range we have #sinh u >= 0#, so we can assume #sqrt(cosh^2 u - 1) = sinh u#

The #x# value #0.5# corresponds to #cosh u = 1# and hence #u=0#.

The #x# value #1.3# corresponds to #cosh u = 2.6# and hence #u = cosh^(-1) (2.6)#

Note that:

#sinh(cosh^(-1) 2.6) = sqrt((2.6)^2 - 1) = sqrt(6.76-1) = sqrt(5.76) = 2.4#

Then:

#int_0.5^1.3 sqrt(4x^2-1) dx = int_0^(cosh^(-1) 2.6) sqrt(cosh^2 u-1) dx/(du) du#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = int_0^(cosh^(-1) 2.6) 1/2 sinh^2 u color(white)(.)du#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = int_0^(cosh^(-1) 2.6) 1/4 (-1+cosh 2u) color(white)(.)du#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = [-1/4 u + 1/8 sinh 2u]_0^(cosh^(-1) 2.6)#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = -1/4 cosh^(-1) 2.6 + 1/8 sinh 2(cosh^(-1)(2.6))#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = -1/4 cosh^(-1) 2.6 + 1/4 sinh (cosh^(-1)(2.6)) cosh (cosh^(-1)(2.6))#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = -1/4 cosh^(-1) 2.6 + 1/4 (2.4)(2.6)#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = 1.56-1/4 cosh^(-1) 2.6#

#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) ~~ 1.15764 #