Can you help me integrate this, its something to do with hyperbolics?
#int_0.5^1.3sqrt(4x^2 -1)dx#
2 Answers
The answer is
Explanation:
First compute the indefinite integral
Let
Therefore,
But,
Therefore,
Now, compute the definite integral
Explanation:
Note that:
#sinh^2 t = cosh^2 t - 1 = 1/2 (-1 + cosh 2t)#
#sinh 2t = 2sinh t cosh t#
So let's try a hyperbolic substitution:
#x = 1/2 cosh u#
#dx/(du) = 1/2 sinh u#
Note that for the given integration range we have
The
The
Note that:
#sinh(cosh^(-1) 2.6) = sqrt((2.6)^2 - 1) = sqrt(6.76-1) = sqrt(5.76) = 2.4#
Then:
#int_0.5^1.3 sqrt(4x^2-1) dx = int_0^(cosh^(-1) 2.6) sqrt(cosh^2 u-1) dx/(du) du#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = int_0^(cosh^(-1) 2.6) 1/2 sinh^2 u color(white)(.)du#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = int_0^(cosh^(-1) 2.6) 1/4 (-1+cosh 2u) color(white)(.)du#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = [-1/4 u + 1/8 sinh 2u]_0^(cosh^(-1) 2.6)#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = -1/4 cosh^(-1) 2.6 + 1/8 sinh 2(cosh^(-1)(2.6))#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = -1/4 cosh^(-1) 2.6 + 1/4 sinh (cosh^(-1)(2.6)) cosh (cosh^(-1)(2.6))#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = -1/4 cosh^(-1) 2.6 + 1/4 (2.4)(2.6)#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) = 1.56-1/4 cosh^(-1) 2.6#
#color(white)(int_0.5^1.3 sqrt(4x^2-1) dx) ~~ 1.15764 #