How do you prove # [sin(x+y) / sin(x-y)] = [(tan(x) + tan (y) )/ (tan (x) - tan (y))]#?
2 Answers
Please refer to a Proof in the Explanation.
Explanation:
We have,
Similarly,
Hence, the Proof.
We seek to prove that:
# sin(x+y)/sin(x-y) -= (tanx+tany)/(tanx-tany) #
We can the trigonometric identities:
# sin(A+B) -= sinAcosB + cosAsinB #
# sin(A-B) -= sinAcosB - cosAsinB #
Consider the LHS:
# LHS = sin(x+y)/sin(x-y) #
# \ \ \ \ \ \ \ \ = (sinxcosy + cosxsiny)/(sinxcosy - cosxsiny) #
Now if we multiply both numerator and denominator by
# LHS = (sinxcosy + cosxsiny)/(sinxcosy - cosxsiny) * (1/(cosxcosy)) / (1/(cosxcosy))#
# \ \ \ \ \ \ \ \ = ( (sinxcosy)/(cosxcosy) + (cosxsiny)/(cosxcosy))/ ((sinxcosy)/(cosxcosy) - (cosxsiny)/(cosxcosy)) #
# \ \ \ \ \ \ \ \ = ( (sinx)/(cosx) + (siny)/(cosy))/ ((sinx)/(cosx) - (siny)/(cosy)) #
# \ \ \ \ \ \ \ \ = ( tanx + tany )/ ( tanx - tany ) \ \ \ # QED